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Abstract-The scallering of clastic waves by intert:lcial cracks in a layered medium is investigated
in this paper. A hybrid numerical method is employed t" ohtain the solution. This method combines
the finite element equations and the Green's function b\.lundary integral representation. Numerical
results are presented for the cwck-opening displacements (CODs) and the Mode I and Mode II
stress-intensity factors (SIFs) as functions "fnondimensional frequency when normal and tangential
time-harmonic line loads are applied to the free surt:.ce of the layered medium.

I. INTRODUCTION

In the past 20 years. corrosion-resistant coating technology has n:ceived a lot of attention
from a multidisciplinary enginccring and scientific community for its widc applications.
The selection of thc coating matcriaL its thickncss and the number of coats arc usually
based on the nature and the dcgree ofaggressivencss of the environmentthc coated structure
will be exposed to. Also. coatings have to be compatible with the base material (substrate)
to assure a good bonding. In the steel industry. the most commonly-used processes for
applying metal coatings are: hotdipping. c1ectrodcposition. spraying. diffusion and e1adding
(Suziki. 1989). In all of these processes. it is not unusual to produce a coating with defects.
such as cracks. debonding or discontinuities. Moreover. these defects can also occur in situ
due to fatigue or unusual stress It:vcls applied to the material. The presence of these defects
makes the structure vulnerublt: to failure due to the propagation or growth of these defects.
In this paper we examine dynamic loading effects on the crack-opening displacements
(COOs) and the stress-intensity factors (SIFs).

Among the works reported during the last decade that deal with scattering by interface
cracks is that of Neerhoff (1979). who investigated the diffraction of incident bulk SH and
Love waves by a crack of finite width at the interface of a layered medium. He solved the
antipl.tne problem employing the integral equation method. Keer et al. (191ol4) studied the
resonance phenomena for a crack ncar the free surface of a homogeneous half-space. The
plane strain problclm was solved by deriving a system ofcoupled singular integral equations.
These integral equations were solved numerically for incident waves genenlted by uniform
tension and shear applied to the free surface. The work done by Yang and Bogy (1985) is
the most relevant to our work. They considered a plane strain problem of a layered half­
space with a single interfacial crack. The method of solution was simil'lr to that of Necrholf
(1979) for the antiplane problem. It leads to a set of coupled singular integral equations.
After discretization of the crack surfaces. these integrals are approximated by an algebraic
system of equations that are solved numerically. In a two-part paper. Graccwski and Bogy
(1986a.b) applied the same method to investigate the scallering by a crack at the interface
of a single-layered medium loaded by an invicid fluid. In the first paper the incident field
was generated by a uniform normal and shear traction applied at the liquid-layer interface.
Plane waves and bounded beams with a Gaussian profile incident from the fluid side were
considered in the second part. The transient response of an interface crack in a two-Ialyered
plate subject to an antiplane stress field was studied by Kundu (1986). He also employed
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Fig. I. Layered haIr-space with tw,l contiguraliulls or intcrr'lCial cracks.

the integral equation method proposed hy Neerhotr. Kundu and Hassan «1987) solved the
same problem for a layered plate of tlnite length. by discretizing the whole domain with
finite clements. First the disl:retizcd equation of motion was solved in the frequency domain.
then a fast Fourier transform (17FT) tedmiquc was uscd to obtain the timc response. More
recently. the interadion between two cral:ks at thc interface or a layered isotropic and
anisotropic medium under antiplane loading was studied by Kundu (I9X7) and Karim and
Kundu (1988).

In this paper we present a ditl"crenl method for studying the lIyn'lmic response of a
layered half-space with interfadal cral:ks due to in-plane surface line loadings. Two prob­
lems arc investigated using this method. a single long interfal:ial l:f<Kk .tnd two smaller
cral:ks separated by a short distanl:e. The sum of the lengths of thc two cracks and the
scparation distance is cqual to the length of the single l:ral:k (sec Fig. I). The motivation
for this partil:ular l:hoil:e wmcs from the need to understand the dillcrenl:cs in thc dynamil:
response of a fully-open and a slightly-dosed cral:k. The method of solution used here was
suggested by Zienkiewil:z (1977). and has heen applicd by Shah et al. (1982) for the
diffraction of SH waves in a half-spal:e. Fransscns and Lagasse (11.)84) used a similar
technique to study the two-dimensional sl:attering of both SH and poSY W.lves by a
cylindrical obstade in a layered medium. The most rel:cnt work by Khair t't al. (1989) is a
generalization to threc-dimo.:nsional amplilication of seismic waves by arhitrarily-shaped
alluvial valleys embcdded in a homogeno.:ous half-spal:c.

This method combines the tinite clement tedlllique with the boundary integral rep­
resentation on the boundary of the finite dement region to solve for the scattered field. The
overlapping of the two regions, whil:h will be disl:ussed in the next section, permits the
evaluation of the integrals for source and observation points on two different contours.
This avoids the singularities associated with the Green's functions when the source and
receiver coincide. The advantage of this method resides in the fact that once the Green's
functions me obtained for a given frequency, the scattering due to any irregularity that tits
inside the finite clement region can be determined. Thus this method differs fundamentally
from that employed in the earlier works on interface cral:ks cited above. Here, instead of
using the integral representation over the crack surface, the exterior solution is written as
an integral over a surface aW~IY from the crack (or scatterer). This allows one to solve for
multiple cracks without changing the exterior representation. In the next section an outline
of the method is given.

, FORMULATION

2.1. Statement of the prohlem
The problem considered here is a single layer honded to a half-space as illustrated in

Fig. I. The layer and half-space are made of linearly clastic. isotropic. homogeneous
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materials. When necessary a subscript or superscript (1.2) is used to describe properties
related to the layer and substrate. respectively. e.g. PI. J1.1. ;., represent the mass densitiy
and the Lame's constants of the layer. In this paper the dynamic response due to time­
harmonic line loads is investigated. In the first problem we consider a large crack of length
3.SH located at the interface of the single-layered structure. The second problem consists
of two smaller cracks of equal lengths 1.7H separated by a distance D = 0.4 H. Here H
stands for the layer thickness.

Let u, be the displacement component in the ith direction in the Cartesian coordinate
system shown and r 'j the stress tensor having time-harmonic behavior of the form e- iw,.

The equation of motion in the frequency domain is written as

(I)

where P is the mass density. .r. the body force per unit volume and w the circular frequency.
The total fields generated by the interaction of the free field with the cracked medium

can be expressed as

(2)

where the symbols carrying the superscripts sand f are associated with the scattered and
free tields. respectively.

It is assumed that the upper surface of the layered medium is traction free and the
bonding between the layer and the substrate is perfect except at the cracked regions (cracks
or delamination). The crack surfaces are assumed to be traction free. For both problems
mentioned above. the boundary and continuity conditions are

r~~) = r:~) = r~~) = 0; : = 0; -'X) < x < Xl.

I'roh!clIl I. Single crack

r~~) = r:.~1 = r~~' = 0; ; = H; Ixl < 1.9H

Proh/elll 2. TIro cracks

(3)

(4)

(5)

(6)

(7)

r~~) = r~~'. r:~) = r:;'. r~~) = r~;); : = II; Ixl < 0.2H and Ixl> 1.9H (9)

r~~) = r:p = r~~l = 0; : = II; -1.9// < x < -0.2// and 0.2f1 < x < 1.9H (10)

r~;) = r:;) = r~;) = 0; : = II; -1.911 < x < -0.211 ,1I1d 0.2f1 < x < 1.9H (II)

Moreover. both fields must satisfy the clastic radiation conditions at infinity. For the general
three-dimensional formulation of this problem. we will consider the dependence of the
displacement on the y-coordinate to be taken as

/I,{x. r.:) = /I,{x.:)ei~I'. ( (2)

This represents a propagating wave in the y-direction with wavelength 21t/~ and amplitude
varying with x and :. This allows us to consider incident waves that are propagating at an
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arbitrary angle to the ax.is of the crack(s). The method of solution will be discussed in the
following sections.

2.2. Description of the method
The method of solution used here combines the Green's function boundary integral

representation with the finite element equations. A simple fictitious contour B around the
scatterer is introduced as shown in Fig. 2. We define the interior region. RI • to be bounded
by B. This region is then discretized with finite elements having S = N I + S B number of
nodes. N I being the number of nodes interior to Band SB the number of nodes on B.

As described above. the domain R I is divided into finite elements. Let the element
domain and the boundary be denoted by !Y' and flo,. respectively. The displacement field
is written in the usual way in terms of the shape functions and the nodal displacements in
matrix form as follows:

Itl

1'1

~{}[~'
0 0 Ip" () 0] 11'1

(ul (PI 0 () (I>" 0

II' 0 0 II>, 0 () (I>" u"

I'n

\t'"

= [(Ill: lI'l
( 13)

in which /I denotes the numher of nodes per element and the superscript (e) is the element
identifier. By using the strain displaeement n:lation we get

( 14)

where I: = : (', ,.1:". 1:".1:,..• I:". I: ... }' and the deri vative opt:rator D is

I~

I~X
() 0

0 i~ 0

c
() 0

c::

D= (' ( 15)
()

I~:::
i~

(~

()
('XI':::

I~
i : 0
'" I~X

the superscript t denotes transpose.
The stresses are related to the strains via the constitutive law and may be written in

matrix. form as

(16)

where C is the (6 x 6) symmetric stiffness matrix. For an isotropic material. all the entries
of C are in terms of L.lmc·s constants ;. and JI.

The total energy associated with each element (e) is to be taken as
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(17)

where Utcl and .)f·lc) arc the strain and kinetic energies, respectively, and WI c) is the surface
traction work potential; these are defined as

WI c) - I. A: «(Ull(tl.*+ (t11fu}*)dr- 2 Jr.,., t f l. J t ft·

( 18)

( 19)

(20)

Here {t l is the traction vector on the boundary and { l* represents the complex conjugate
of the vector expressions. The integration in the y-direction is carried out over one wave­
length and the above expressions represent the energies per wavelength in the same direction.

By setting the first variation of the total energy. JE. to zero one may get the elemental
equations of motion written in the following form

(21 )

where Sic) is called the elemental impedance matrix and piC) is the consistent nodal force
vector. These arc defined as

(22)

and

(23)

The elemental impedance matrices and load vectors are computed and assembled into
a global impedance matrix and load vector. The total number of nodes in region R1 is
composed of Ns nodes lying on the boundary Band N, nodes inside. The global equations
of motion are partitioned in such a way that the inside nodal displacements appear at the
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top and the boundary ones at the bottom. Therefore the discretized equations of motion
over the region R I become

(24)

For solution purposes. only a relationship between the inside nodal displacements and the
boundary ones is needed and this is given by

(25)

The boundary integral representation is derived from thc elastodynamic reciprocity theorem
(Achenbach, 1973). written in the following form:

f(fgllfUl·_Jfll',.I)d4 -f (JtIIJ,.I_lqllIUI)d('
I , I J I I I I ,- I I I I I I I I

I ("

(26)

where u. t are the displacement and traction on the bl)undary Col' thc region A associated
with the body force f. and ". (\ arc those associated with 1:. We shall dcnote the region
exterior to Cas RI . Note that the region between the contours 8 and C is common to R"
and RI . We will apply the ahove theroelllto the region RI • with the lirst field as the scattered
field and the second one as the line source Green's function solution. For this purpose we
define the Green's function and the scattered fields as solutions to the following equations

(27)

and

(21')

In the above equations, i stands for the displacement direction and k for the force direction.
The Green's function solution for a layen;d medium was derived by Bouden (1990).

After direct substitution of these two fields into eqn (26), we get

(29)

The contour integration is carried out in a clockwise manl1l.:r.
Applying the e1astodynamic reciprocity theorem [eqn (26)] to the region interior to C

with the two fields as the Green's solution and the free field with no forcing terms we get

(30)

The above integral is evaluated in a counterclockwise manner. Combining eqns (29) and
(30), one obtains the integral representation of the total displacement at any point in the
region RI; as

(31 )

Noe eqn (31) is evaluated for points (x'.;') coinciding with the nodes on the boundary B.
This leads to an equation connecting the displacements at the nodes on B to those at the
nodes on C in the form
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where [BJ = [O][<I>cl and [Bsl = [O][<I>sl.
Using eqn (32) and completing Cc with the remaining inside nodal displacements,

yields

(33)

where [.-Isd is a (}SB x 3.Vd and [A BBI is a (}Ss x 3,V/J) complex matrix. Substituting eqn
(25) into eqn (33) and solving for: U8 :. we get

(34)

The inside nodal displacements can then be determined by using eqn (25). The displacement
at any point in the region RE can be found by applying eqn (31).

J. NUMERICAL RESULTS AND DISCUSSION

Numerical results were ohtained for a nickel coating layer over an iron substrate.
Single-klyer coatings 'Ire usually of the order of microns topping b.lse materials of several
millimeters. This contrast in thickncss justifies the single-layered half-space model. In our
analysis. all the rnaterial'lI1d geometric parameters were nondimension.i1ized. Lengths were
normalized with respect to the layer thickness II. The matcrial constants and densities were
normalized with respect to the layer rigidity and density. respectively. Then. the layer
thickness. rigidity and density were set to unity. Finally. all the wavenumbcrs were
normalized with respect to the layer shear wavenumber k ~ I'

The material properties of nickel and iron arc listed in Tabk I. Here (1, is Poisson's
ratio and C I /, C!/ and CI(, arc the longitudinal. shear and Rayleigh wave velocities, respec­
tively. This case can he dassifh:d as a "Ioading" case according to Farnell and Adler (1972).
because the layashear velocity is less than the half-space shear velocity (i.e. C 21 < C22 ). For
this case. multipk Rayleigh-like guided wave modes occur. Figure 3 shows the dispersion
behavior of these guided modes. The velocities of these modes. which are frcqucncy depen­
dent. arc higher than the layer Rayleigh velocity ('1(1' The numeril.:al integration of the
semi-infinite wavenumber-type of integrals that arise in the cvaluation of the Green's
displacements and their associated stresses is discussed by Xu and Mal (1987) and Bouden
(1990). We definc the nondimensional frequency t; as k 21 If. Two problcms arc considered
here. Firstly, a single Griflith crack at the interface of this layered material. The length of
the crack is a = 3.811. Secondly. two itlentical cracks of length 1.7fI separated by a distance
D = OAH between their inner tips .Ire considered.

The incident field is caused by a time-harmonic line load applied at the origin of the
coordin.lte system (Fig. I). Both normal and tangential loads are considered.

The internal region Rl was discretized into finite clements. The mesh for the single
crack had 316 elements und 506 nodes. For the two-cmck mesh. 356 elements and 557
nodes were used. Regular isoparullletric clements were used everywhere except at the crack

Tahle I. Material properties

Material p, C" C" CR,

(i) fT, (g ':111- ') (km s ') (km s ') (km s· ')

Ni.:kcl 0.31 K.S 5.2-l 2.75 2.55
Iron 02S 7.7 5.72 3.16 2.92
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Fig. 3. Phase velocity for the !irsl four Rayleigh modes for a nickel layer over an iron suhstrate.

tips, where eight six-node triangular quarter-point clements were used. Barsoum (1976)
showed that these singular clements can model cr:lck-tip singularity in a homogeneous
medium. However, it h:ls been show that the stress singularity at the tip of an interfacial
crack is oscillatory if the crack faces arc smooth and perfect bonding is assumed outside
the crack tips (sec Williams, 1959 ami Bogy, 1971). This wdl·known oscillating singularity
satisfies the following equation

II~ sin~ (;or)+ws~ (:m) = ()

which has the solution

_ I I I (I + II)
~ - ! ± ') n I /'_TC - )

(35)

where

II = J!~.(.I.~2(J'1)-JI.I~I-2(J'~).
2JL~(I-(J'I)+2Jldl-(j~)

For the malerial combination used here, II = 0 and x = ~. Thus the singularity is identical
to the case of a homogeneous material.

The linite clement discretization and the numerical evaluation of the contour integral
arc the only sources of inaccuracy in this mcthod. The size of the clements and number of
Gauss points per clement were varied to kt:ep the relative error kss than 5%. It was found
that 10 ekments pt:r wavelength is the minimum to capturt: tht: physics of the problem and
also three Gauss points per elements for the contour integration arc enough for the desired
accuracy. A comparison with published results can be found in Rouden (1990).

3.1. Crack-opening displacements
Crack-opening and sliding displacements (COOs) were computed at different non­

dimensional frequencies. Considering the geometric and loading symmetry, only the COOs
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on the right half are shown in Figs 4-7 for I: = 0.9. The dotted line represents the in-plane
sliding of the crack surfaces, while the solid line represents the opening of the crack. The
arrow on top of the layer is the force direction. Figures 4 and 5 show the COOs for the
single and double crack configurations. It is interesting to note from these figures that
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the crack-opening displacements have the same shapes for X II> 0.2. Also, the normal
displacements in both cases are nearly the same in this region. This is a rather surprising
result. Note that the normal displacement is larger than the sliding displacement over most
or the crack surface for the single crack and over the entire crack surfaces fl)r double cracks.
It was round that as the fn:quenncy was incrL'ased the CODs tkcreased. Also. the sliding
displacement's amplitude became Iargcr than thc normal di ...placement·s.

Figures 6 and 7 show the results for a nOl'lllal line load. The CODs for the single and
doublc cracks behave quite dilkrently now. It is found from Figs () and 7 that the normal
COD is larger than the tangential one. Furthermore. the ('ODs are larger for the doublc
cracks than for the singlc crack. At high fn.:quencies it was found that the shapes of the
CODs become oscillatory and arc of similar shapes fill' bolh crack conligurations.

3.2. .~'[r('ss-ill (<'/lsi(.I' !l/( '[1Jr.1

The stress-intensity factors 1\, and h', can be cxtractcd fromthc linite ekment solution
by identifkation or the codlieicnts of thc singular terms in the analytical expressions for
the displacement fields in the vicinity of the crack tip with the interpolated expressions from
the six-noded triangular quarter-point elements.

The analytical cxpressillns I'm the displacementlidds in the vicinity ofa crack tip along
the bond line of two half-spaces of dilkn.:nt mall:rials shown in Fig. ~ can be derived in the
same manner as for the Iwnwgeneous case. The biharmonic Airy stress function solution
to this plane probkm can be expressed in terms of the complex (Joursat fUIl\:tions of the
complex variablc : := .I: + II' as follows:

'==~=~i?--~._--_.--

CD

Fig. 8. Geometry or an interface CLICk ht:twc'cn h"l1lkd d,,,il11ibr half-spact:s and crack-tip clements.
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(36)

here i takes the values I and 2 for y > 0 and y < O. respectively.
For this problem. the genera! forms of the Goursat functions were given by Sih and

Rice (1964) as

,
4>1(:) =2: I:: ,~ L [(n+ D-i',Jilill.:"

11=1

X r

;(,(.:) = 2e::r.~.:1 ::+;~ L B""-/l_1- 1 :: ,~ L [(fI- !)-i',IBi/l'.:/I
n~t n~t

for the region y > 0 and

"

4>::(.:) = 2e1n~ :-I::-;~ L [(n+ !)-i'lJBIII1:/I
1I~1

(37)

(38)

(39)

,
X1(=) = 2:'::~;~ L BIIII:"_2e1n'I:I::

II~ 1

(.

"I L [(n- !)-i'llBIIII:"
II 1

(40)

for the region y < O. tn eqns (37) through (4tH. '1 is the bic!astic constant given by eqn (35).
It can be shown after some Lllgebm tll'lt the cr,lck-tip displ,lcements and stress-intensity
factors satisfy the following relations for the case 'I =0:

I Jr {[ () JO] [ ° 30-]}tt l =4J
t

l 2 k l (2"1-I)cos 2 -cos 2. +k::, (2"1+3)sin 2 +sin 2

I Jr { [, {} JOJ [ () 30]}t'1=4JII 2 k l (2"1+I)sin 2 -sin 2 -k:: (2"1-3)cos 2 +cos 2

(41 )

(42)

(43)

(44)

here ", = 3- 4IT, for this plane stmin cnse. Note that these expressions arc identical with
the homogeneous solution derived by Williams (1957).

The collapsed quadrilateral qu,lrtcr-point clement contains terms in the intcrpolated
displacement fields proportional to the sq1l41re root of the radial distnnce r emnnating from
the crack tip. For instance. the displncement field components nlong the edges contnining
the nodes A. B. C nnd A. D. l:: shown in Fig. 8 4Ire given by Owen 4Inct Fnwkes (1983). i.e.

(45)

(46)

(47)
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j r r
1', = ", +(41'0- 1'/; -31'.) L +(21'/.. +21',-41'0) L (4X)

The Mode I and Mode" stress-intensity factors presented in Figs 9-14 arc obtained by
equating the coetlicients of jr in eqns (4\ )(44) and (45) -(4X), We have

or

and

or

(4lJ)

(50)

(51 )

:.!O ----.-r----r----..-r::;.-.--.~.

IK

r
!::
cr.;'l\..,
~ :t.
024

NON .. [)1~H:NSIO:'lI\L F[{EQIII':NCY (k"lI)

Fig. 10. Mode ( and Mode \I stress-intensity factors as a function of nondimension.t1 frequency at
- crack tip C of the single crack for a tangential load,
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Fig. II. Mode I and Mode II stress-intensity factors as a function of nondimensional frequency at
crack tip A of the single crack for a normal load.

I 2JI1 It' IK, = Ik,1 = - -- -(4uo-u£-3u.).
• • I\:z + I L ~

(52)

The numerical values of the stress~intensity factors presented here are the average of eqns
(49) and (50) for mode I and eqns (51) and (52) for mode H.

Figure 9 shows K, and Kz for crack tip A versus the nondimensional frequency
r. == k!, II for a horizont:11 time-harmonic line load. which is applied on the surface of the
layer. K1 and K! for the double~crack case at tip C are depicted by Fig. 10. It is observed
that K, and K! in both cases start at the s'lme values for low frequencies. then they decrease
(K! decreasing more rapidly than K1) and then increase to'1 pc'lk at about F. ::::: 0.9. Beyond
this frequency. they gr'ldually decre:lse. Note that K1 is dominant. as would be anticipated
from the nature of the loading. For the double cntcks. however. both K, and Kz reach
nearly the same peak. Note that in both cases mode I dynamic SIFs arc substantially higher
lhan the static values in some ranges of frequencies. On the other hand. the mode If SIFs
have somewhat higher static v'llues. Figures II and 12 show K1 and K! for a normal loading.
In lhis case the roles are reversed. The opening mode dominates. It is found now that for
the single crack K, and Kz increase with frequency reaching sharp peak values at a lower
frcl/ucncy. Le. l: ::::: 0.3. This lowering of the resonance frequency from the shear loading
case to the normal case is in agreement with the results obtained by Keer e/ al. (1984) for
a horizontal crack buried near the surface of a half-space due to uniform shear and tension
loadings. Figure 12 for the double crack shows quite different behavior than for the single
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crack. It is st:t:n that for tht: singh.: crack tht: dynamic S!Fs (both K, and K2 ) are much
hight:r than the static valut:s at low frt:qut:ncit:s, For the doubh.:-crack configuration tht:
dynamic K, is lowt:r and K 2 is hight:r than tht: static valut:s. Finally, K, and K 2 at crack tip
H for sht:ar and normal loading art: depictt:d by Figs 13 and 14. respectively. For tht:
horizontal loading case. hoth strt:ss-intensity factors at H arc lower than those evaluated at
C (Fig. 10). In the casc of vcrtical loading. K 1 at tip B is higher than at tip C for both static
and dynamic loadings. I'v!on:over. the dynamic effcct is quite hlrgc. K2• on the other hand,
is lowt:r at B than at C. It is ch.:ar from the dispersion curws dt:picted in Fig. 3 that thc
frcquelH.:y valucs at whidl K 1 and K2 havt: local maxima do not correspond to a cut-oIl"
frequcncy. Howt:vt:r. wht:n tht: frt:quclKics at thest: peak values art: compared to the natural
frt:qut:ncit:s of a Timoshenko platt: or kngth 3.XII (Tabh.: 2) with two dilft:rt:nt boundary

Tahle 2. '.;alural fr~qu~n"i~s for a Simply
Supported (SS) and Clamped (C) Timo­
,;h~nk" plat~ and frc,-!ucncy valucs at pcak,;

of strcss·intcn,;ity factors

i\lndc I (lo'II) 2 ("",)

SS ll ..\4 OAll
C 1l.76 ll()4

I'ca" 0.3 u.')
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conditions (simply supported or clamped). they show a good correlation. For tangential
loading the peak occurs at c: ;:: 0.9. This value is bounded by the two natural frequencies
of the second mode (W:I)' with the lower and upper bounds corresponding to the simply
supported (55) and clamped (C) case. respectively. In the case of normal loading the peak
occurs at f: ;:: 0.3. This value is slightly lower than the natural frequency of the first mode
(w II) for the simply-supported case. However. since the frequency increment is 0.3. the
accuracy of these peak frequency values is within this increment. It is concluded from these
figures that the dynamic effects are quite substantial and. in general. give higher values of
K, for normal impact at low frequencies. The worst case is a single interfacial crack.

~ CONCLUSION

A combined finite-element and integral representation technique has been presented
to analyze scattering of waves by interfacial cracks in a layered half-space. The advantage
of the technique is that both single and multiple cracks have been studied simply by changing
some of the interior clements. Consequently. the computation of the Green's function is
done om:e and for all by choosing the exterior boundaries Band C appropriately so that all
the scatterers arc within C. Thus this differs from the integral equation methods that employ
representations over the scatterer surface(s). Numerical results showing COOs and SIFs
for a single crack and for two cracks due to normal and shear line loads have been presented.
It is found that the COOs have similar shapes in both cases at low frequencies. although
there arc some dilli.:rences in detail that depend on the frequency. The stress-intensity factors
at the outer tips in both cases arc found to hehave similarly for the horizontal load.
However. they behave quite differently fill' the vertical load. For the vertical load the mode
[ stress-intensity factor at lhe inner tips fill' the douhle aacks is found to he larger than
that at the outer tips. Dynamic stress-intensity factors arc liHlnd to attain high peak values
at certain frequencies. depending on the loading. The loading and houndary conditions at
the uppa );Iyer surface Cllllsidered here arc quite dill'crent from those considered by
Gracewski and Bogy (Il)X6a.h). so the results for the single crack considered here cannot
he compared with theirs.
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