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Abstract—The scattering of elastic waves by interfacial cricks in a layered medium is investigated
in this paper. A hybrid numerical method is employed to obtain the solution. This method combines
the finite element equations and the Green's function boundary integral representation. Numerical
results are presented for the crack-opening displacements (CODs) and the Mode I and Mode 11
stress-intensity fuctors (SIFs) as functions of nondimensional frequency when normal and tangential
time-harmonic line loads are applied to the free surface of the layered medium.

L INTRODUCTION

In the past 20 years, corrosion-resistant coating technology has reccived a lot of attention
from a multidisciplinary engineering and scientific community for its wide applications.
The sclection of the coating material, its thickness and the number of coats are usually
based on the nature and the degree of aggressiveness of the environment the coated structure
will be exposed to. Also, coatings have to be compatible with the base material (substrate)
to assurc a good bonding. In the steel industry, the most commonly-used processes for
applying metal coatings are : hotdipping, clectrodeposition, spraying., diffusion and cladding
(Suziki, 1989). In all of these processes, it is not unusual to produce a coating with defects,
such as cracks, debonding or discontinuitics. Morcover, these defects can also oceur in situ
due to fatigue or unusual stress levels applied to the material. The presence of these defects
makes the structure vulnerable to failure due to the propagation or growth of these defects.
In this paper we examine dynamic loading effects on the crack-opening displacements
(CODs) and the stress-intensity factors (SEFs).

Among the works reported during the last decade that deal with scattering by interface
cracks is that of Neerhoff (1979), who investigated the diffraction of incident bulk SH and
Love waves by a crack of finite width at the interfuce of a layered medium. He solved the
antiplane problem employing the integral equation method. Keer et al. (1984) studied the
resonance phenomena for a crack near the free surfuce of a homogeneous half-space. The
plane strain problelm was solved by deriving a system of coupled singular integral equations.
These integral equations were solved numerically for incident waves gencrated by uniform
tension and shear applicd to the free surface. The work done by Yang and Bogy (1985) is
the most relevant to our work. They considered a plane strain problem of a layered half-
space with a single interfacial crack. The method of solution was similar to that of Necrhoff
(1979) for the antiplane problem. It Icads to a sct of coupled singular integral equations.
After discretization of the crack surfaces. these integrals arc approximated by an algebraic
system of equations that are solved numerically. In a two-part paper. Gracewski and Bogy
(1986a,b) applicd the same method to investigate the scattering by a crack at the interface
of a single-layered medium loaded by an invicid fluid. In the first paper the incident field
was generated by a uniform normal and shear traction applied at the liquid-layer interface.
Plane waves and bounded beams with a Gaussian profilc incident from the fluid side were
considered in the second part. The transient response of an interface crack in a two-lalyered
plate subject to an antiplane stress field was studied by Kundu (1986). He also employed
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Fig. 1. Layered half-space with two configurations of interfacial cracks.

the integral equation method proposed by Neerhotl. Kundu and Hassan ((1987) solved the
same problem for a layered plate of finite length, by discretizing the whole domain with
finite elements. First the discretized equation of motion was solved in the trequency domain,
then a fast Fourier transform (FFT) technique was used to obtain the time response. More
recently, the interaction between two cracks at the interface of a layered isotropic and
anisotropic medium under antiplane loading was studied by Kundu (1987) and Karim and
Kundu (1988).

In this paper we present a different method for studying the dynamic response of a
layered half-space with interfacial cracks due to in-plane surface tine loadings. Two prob-
lems are investigated using this method, a single long intertacial cruck and two smaller
cracks scparated by a short distance. The sum of the lengths of the two cracks and the
separation distance is cqual to the length of the single crack (see Fig. 1). The motivation
for this particular choice comes from the need to understand the differences in the dynamic
response of a fully-open and a slightly-closed crack. The method of solution used here was
suggested by Zienkicwicz (1977), and has been applied by Shah er al. (1982) for the
diffraction of SH waves in u half-space. Franssens and Lagasse (1984) used a similar
technique to study the two-dimensional scattering of both SH and P-SV waves by a
cylindrical obstacle in a layered medium. The most recent work by Khair ef af. (1989) 15 a
generalization to three-dimensional amplilication of seismic waves by arbitrarily-shaped
alluvial valleys embedded in a homogencous half-space.

This method combines the finite clement technique with the boundary integral rep-
resentation on the boundary of the finite element region to solve for the scattered field. The
overlapping of the two regions, which will be discussed in the next section, permits the
evaluation of the integrals for source and observation points on two different contours.
This avoids the singularities associated with the Green's functions when the source and
recciver coincide. The advantage of this method resides in the fact that once the Green's
functions arc obtained for a given frequency, the scattering due to any irregularity that fits
inside the finite element region can be determined. Thus this method differs fundamentally
from that employed in the carlicr works on interface cracks cited above. Here, instead of
using the integral representation over the crack surface, the exterior solution is written as
an integral over a surface away from the crack (or scatterer). This allows one to solve for
multiple cracks without changing the exterior representation. In the next section an outline
of the method is given.

2. FORMULATION

2.1. Statement of the problem
The problem considered here is a single layer bonded to a half-space as illustrated in
Fig. 1. The layer and half-space are madc of lincarly efastic, isotropic. homogeneous
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materials. When necessary a subscript or superscript (1, 2) is used to describe properties
related to the layer and substrate. respectively. e.g. p,. u,. 4, represent the mass densitiy
and the Lamé’s constants of the layer. In this paper the dynamic response due to time-
harmonic line loads is investigated. In the first problem we consider a large crack of length
3.8H located at the interface of the single-layered structure. The second problem consists
of two smaller cracks of equal lengths 1.7H separated by a distance D = 0.4 H. Here H
stands for the layer thickness.

Let u, be the displacement component in the ith direction in the Cartesian coordinate
system shown and t,, the stress tensor having time-harmonic behavior of the form e,
The equation of motion in the frequency domain is written as

L, +pol = ~f (=123 (1)

where p is the mass density. /, the body force per unit volume and o the circular frequency.
The total fields gencrated by the interaction of the free field with the cracked medium
can be expressed as

w=w+u s T, =14t 2

where the symbols carrying the superscripts s and f are associated with the scattered and
free ficlds, respectively.

It is assumed that the upper surface of the layered medium is traction free and the
bonding between the layer and the substrate is perfect except at the cracked regions (cracks
or dclamination). The crack surfaces are assumed to be traction free. For both problems
mentioned above, the boundary and continuity conditions are

WW=tl=t"=0;, 2=0;, —-w<x<w. 3)
Problem V. Single crack
W =t M= W =t = x> L9 4)
t=d?, = W=l c=H; |x|>19H (5
W=t =t"=0; z:=H; |¥]<|9H (6)
==t =0; -=H, |[x|<19H €
Problem 2. Two cracks
W =y, o= = 2= H; |x| <02H and (x| > 19H (8)
=2 D= =P =M | <02H and (x| >19H (9)
=t =t =0; z=H, —-19H<x< ~02H and 02H <x<19H (10)

> N b
e = = =0

=f; ~19H <x< —-02H and 02H <x<|9H (1)

Moreover, both fields must satisfy the elastic radiation conditions at infinity. For the general
threc-dimensional formulation of this problem, we will consider the dependence of the
displaccment on the y-coordinate to be taken as

1,(x, ¥.2) = u,(x, ) e (12)

This represents a propagating wave in the y-direction with wavelength 2n/¢ and amplitude
varying with x and z. This allows us to consider incident waves that are propagating at an



536 M. Bounes et al.

arbitrary angle to the axis of the crack(s). The method of solution will be discussed in the
following sections.

2.2, Description of the method

The method of solution used here combines the Green's function boundary integral
representation with the finite element equations. A simple fictitious contour B around the
scatterer is introduced as shown in Fig. 2. We define the interior region, R,. to be bounded
by B. This region is then discretized with finite elements having .V = N+ ¥, number of
nodes, N, being the number of nodes interior to B and NV, the number of nodes on B.

As described above, the domain R, is divided into finite elements. Let the element
domain and the boundary be denoted by Q™ and ', respectively. The displacement field
is written in the usual way in terms of the shape functions and the nodal displacements in
matrix form as follows:

rulw

v,

u ¢, 0O 0 .. P, 0O O Wy
wb=qer=10 ¢, 0 ... 0 ¢, 0|< >
w 0O 0 ¢, ... 0 0 o, u,

Uy

LW )

(13
= [®] L],

in which # denotes the number of nodes per clement and the superseript (¢) is the element
tdentifier. By using the strain displacement relation we get

&) = [D][@] {7} = [B] ju'; (14)

where & = Je, 6t e Bea e, Hand the derivative operator D s

Te s

[~ -
(‘,
. 0 0
cx
0 0
(“.
0 0 .
c:
= ¥ - lS
D 0 i N (13)
oz
(.‘ (‘
. 0o .
oz [GAY
N ( 0 |
X

the superscript t denotes transposc.
The stresses are related to the strains via the constitutive law and may be written in
matrix form as

7y = [Clie; (16)
where C is the (6 x 6) symmetric stiffness matrix. For an isotropic material. all the entries

of C are in terms of Lamé’s constants 4 and p.
The total energy associated with each clement (e) is to be taken as
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Fig. 2. Contour and regions definition.

Ele) - U(cl_*_‘l/‘(cl_ ”/(c) (17)

where U' and .#"* arc the strain and kinetic energies, respectively, and W' is the surface
traction work potential ; these are defined as

1
U® = 5 J;m ()} {ej* dxds (18)
1 ,
A= -, L pw{uj'{u}* dx d: (19
!
W = 5f§i.(c,({"}'{'}"+ {t}'{u}*)dr. (20)

Here {t} is the traction vector on the boundary and { !* represents the complex conjugate
of the vector expressions. The integration in the p-direction is carried out over one wave-
length and the above expressions represent the energies per wavelength in the same direction.

By sctting the first variation of the total energy, S £, to zero one may get the elemental
equations of motion written in the following form

S(c)u(c) - p(c) (21)

where S is called the elemental impedance matrix and p'® is the consistent nodal force
vector. These are defined as

S = L ([B*]'[C][B] — pw?[®]'[®]) dx d: (22)
and

pe = 3@ {t}'(®]dr. 23)

The elemental impedance matrices and load vectors are computed and assembled into
a global impedance matrix and load vector. The total number of nodes in region R, is
composed of Nz nodes lying on the boundary B and N, nodes inside. The global equations
of motion are partitioned in such a way that the inside nodal displacements appear at the
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top and the boundary ones at the bottom. Therefore the discretized equations of motion

over the region R, become
[S“ S”’HLT'F {M( (24)
SB( SB’H ('B PB,

For solution purposes. only a relationship between the inside nodal displacements and the
boundary ones is needed and this is given by

W= —[Sul '[Sial U (25)

The boundary integral representation is derived from the elastodynamic reciprocity theorem
{Achenbach, 1973). written in the following form:

J (lgi tup — v dd =§ (i) v —1qt fu)dC (26)
i o

where u. t are the displacement and traction on the boundary C of the region A associated
with the body force f, and v, q arc those associated with g. We shall denote the region
exterior to C as R;;. Note that the region between the contours B and C is common to Ry
and R,. We will apply the above theroem to the region R, with the first ficld as the scattered
ficld and the second one as the line source Green's function solution. For this purpose we
define the Green's function and the scattered fields as solutions to the following cquations

ZA:/.,+I"’):(;A, — _(5’”‘5(.\._‘_\g)()-(:_:,)ci( BTN (27)

and
L, +pm"u,‘ ={). (28)
In the above equations, i stands for the displacement direction and & for the force direction.,

The Green's function solution for a layered medium was derived by Bouden (1990).
After direct substitution of these two fields into eqn (26), we get

(. 2y = § (1, G, — Zy, 1), dC. (29)
.

The contour integration is carricd out in a clockwise manner.
Applying the clastodynamic reciprocity theorem [egn (26)] to the region interior to €
with the two fields as the Green's solution and the free field with no forcing terms we get

4} (1) Gy = Z,u ) (=) dC = 0. (30)
JC

The above integral is evatuated in a counterclockwise manner. Combining egns (29) and
(30). one obtains the integral representation of the total displacement at any point in the
region Ry as

1 (X', ) = w(x'.2") +§# {t,,Gi, — Zi,u)n, dC. (31)
g

Noe eqn (31) is evaluated for points (", =) coinciding with the nodes on the boundary B.
This leads to an equation connecting the displacements at the nodes on 8 to those at the
nodes on C in the form
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ey = (Us) + [Cﬁ ([GI[C][B] —[®J'[Z]) {n; dC].‘l'c}

+[£([G][C][Bs]—[d’all[zl){"}dC:l{Ua} (32

where [B] = [D][®.] and [B,] = [D][®,].
Using eqn (32) and completing U with the rematning inside nodal displacements,
yields

Cal = [Aa] Ui+ [Aaa]  Usi + U5 (33)

where [4g]is a (3.Vzx 3.V)) and [dys) is a (3N x 3V,) complex matrix. Substituting eqn
(25) into eqn (33) and solving for { Uy}, we get

WUs) = U+ [An][Su] ' [Sis] ~[Aasl} UG} (34)

The instde nodal displacements can then be determined by using eqn (25). The displacement
at any point in the region Rg can be found by applying cqn (31).

3. NUMERICAL RESULTS AND DISCUSSION

Numerical results were obtained for a nickel coating layer over an iron substrate.
Single-layer coatings are usually of the order of microns topping base materials of several
millimeters. This contrast in thickness justifies the single-layered half-space modcl. In our
analysis, all the material and geometric parameters were nondimensionalized. Lengths were
normalized with respect Lo the layer thickness 1. The material constants and densitics were
normalized with respect to the layer rigidity and density, respectively. Then, the layer
thickness, rigidity and density were set to unity. Finally, all the wavenumbers were
normalized with respect to the layer shear wavenumber & 5.

The material properties of nickel and iron are listed in Table 1. Here g, is Poisson’s
ratio and C,,, (', and Cy, are the longitudinal, shear and Rayleigh wave velocities, respec-
tively. This case can be classitied as a “loading™ case according to Farnell and Adler (1972),
because the layer shear velocity is less than the half-space shear velocity (i.e. €, < Cy,). For
this case, multiple Rayleigh-like guided wave modes occur. Figure 3 shows the dispersion
behavior of these guided modes. The velocities of these modes, which are frequency depen-
dent, are higher than the layer Rayleigh velocity Cy,. The numerical integration of the
semi-infinite wavenumber-type of integrals that arise in the evaluation of the Green's
displacements and their associated stresses is discussed by Xu and Mal (1987) and Bouden
(1990). We define the nondimensional frequencey & as &, H. Two problems are considered
here. Firstly, a single Griftith crack at the interface of this luyered material. The length of
the crack is ¢ = 3.8/, Sccondly, two identical cracks of length 1.7 H separated by a distance
D = 0.4H between their inner tips are considered.

The incident field is caused by a time-harmonic line load applied at the origin of the
coordinate system (Fig. 1). Both normal and tangential loads are considered.

The internal region Ry was discretized into finite elements. The mesh for the single
crack had 316 clements and 506 nodes. For the two-crack mesh, 356 elements and 557
nodes were used. Regular isoparametric elements were used everywhere except at the crack

Table 1. Material properties

Material o C, Cs Ce,
(i) a, (gem™Y) (kms ") (kms ") (kms™")
Nickel 0.31 8.8 sS4 275 2.55

Iron 0.28 7.7 572 316 292
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Fig. 3. Phase velocity for the first tour Rayleigh modes for a nickel luyer over an iron substrate,

tips, where cight six-node triangular quarter-point clements were used. Barsoum {1976)
showed that these singular clements can model crack-tip singularity in a homogencous
medium. However, it has been show that the stress singularity at the tip of an interfacial
crack is oscillatory if the crack faces are smooth and perfect bonding is assumed outside
the crack tips (see Williams, 1959 and Bogy, 1971). This well-known oscillating singularity
satisfies the following equation

7 sin* (xm) +cos® (xn) = 0

which has the solution

!
I+

i I+f
- . | .
x n n(l~/i)

in (35)

I
I+

where

i =20) ~u (1 -20)
2t —o )+ 2 (1 —ay)

For the material combination used here, f = 0 and x = 1. Thus the singularity is identical
to the case of a homogencous material.

The finite element discretization and the numerical evaluation of the contour integral
are the only sources of inaccuracy in this method. The size of the clements and number of
Gauss points per element were varied to keep the relative error less than 5%, 1t was found
that 10 elements per wavelength is the minimum to capture the physics of the problem and
also three Gauss points per elements for the contour integration are enough for the desired
accuracy. A comparison with published results can be found in Bouden (1990).

3.1, Crack-opening displacements
Crack-opening and sliding displacements (CODs) were computed at different non-
dimensional frequencics. Considering the gecometric and loading symmetry. only the CODs
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Fig. 4. Crack opening and sliding for the right half of the single crack. This result is for a tangential
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Fig. 6. Crack opening and sliding for the right half of the single crack. This result is for a normal
time-harmonic line load with a nondimensional frequency & = 0.9.

on the right half are shown in Figs 4-7 for ¢ = 0.9. The dotted line represents the in-plane
sliding of the crack surfaces, while the solid line represents the opening of the crack. The
arrow on top of the layer s the force direction. Figures 4 and 5 show the CODs for the
single and double crack configurations. It is interesting to note from these figures that
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the crack-opening displucements have the same shapes for I > 0.2 Also. the normal
displacements in both cases are nearly the same in this region. This is a rather surprising
result. Note that the normal displacement s larger than the sliding displacement over most
of the crack surface for the single crack and over the entire crack surfaces tor double cracks.
It was found that as the frequenncy was mereased the CODs decreased. Alsol the sliding
displacement’s amplitude became larger than the normal displicement’s,

Figures 6 and 7 show the results for a normal line foad. The CODs for the single and
double cracks behave quite differently now. 1t is found from Figs 6 and 7 that the normal
COD is farger than the tangential one. Furthermore, the CODs are farger for the double
cracks than for the single crack. At high requencies it was tound that the shapes of the
CODs become oscillatory and are of simular shapes for both crack conligurations.

3.2, Stress-intensity factors

The stress-intensity factors K and A can be extracted trom the finite element solution
by identification of the cocflicients of the singular terms in the analytical expressions for
the displacement fields in the vicinity of the crack tip with the interpolated expressions from
the six-noded triangular quarter-point elements.

The analytical expressions for the displacement fields in the vicinity ot a crack tip along
the bond line of two half-spaces of different materials shown in Fig. 8 can be derived in the
same manner as for the homogencous case. The biharmonic Airy stress function solution
to this plane problem can be expressed in terms of the complex Goursat functions of the
complex variable 2 = x+11 as follows

Fig. 8. Geometry of an interface crack between bonded dissimilar half-spaces and crack-tip clements.
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U2y = Re[Zh. () + 1. (2)): (36)
here i takes the values 1 and 2 for y > 0 and y < 0. respectively,

For this problem. the general forms of the Goursat functions were given by Sih and
Rice {1964) as

G () =2z""3" n‘; [{(n+H w?t;}g‘"’:" (37
Ai(z) = 23z Ik ”g‘ g, F "Zl [(n= 1)y —in} B =" (38)
for the region y > 0 and
Go(2) = 2tV ”g [(n+ H—iyg]B™: (39)
xa(z) = 22030 ”g‘ Bz 2t ot 2o HE:; [(n— ) ~in} Bz (40)

for the region ¥ < 0. In eqns {37) through (40). # is the biclastic constant given by cqn (35).
It can be shown after some algebra that the crack-tip displucements and stress-intensity
factors satisfy the following relutions for the case = 0

v T
"y \/2 {k‘ i }
1 i A ) 307
oy z%‘; \/g {k( (2:{;+!)smz~sm 7}—-/{;[(2;\‘;—3}&)534—&)5 5 } 42)

) 0 L1 I L0 30
(..M«l)cosz-cus 5 +k, (~k,+3)smz+sm 5 4h

=

- - - ]

43)

vl T 0 30 0 30]
ty = 4;:: \/; {k, (Qn, !)cosj -~ 08 7'~]+k;[(2:\'3+3)sm 5 +sin

- - e

L 0 . 30 0 30
£y = :{p,\/; {k,[(flx;-{- 1) sin 5 TSI ]—k:[(.’lx: —3)0052» +cos 2}}, 44)

here k, = 3~4a, for this plane strain case. Note that these expressions are identical with
the homogencous solution derived by Williums (1957).

The collupsed quadrilateral quarter-point element contains terms in the interpolated
displacement fields proportional to the square root of the radial distance r emanating from
the crack tip. For instance, the displucement ficld components along the edges containing
the nodes A, B, Cand A, D, E shown in Fig. 8 are given by Owen and Fawkes (1983), i.e.

r r

uy =ty (up—ue—3p ..)J j T Cuetuy—Adug) ¢ (45)
r ) r

ry o=y Erg—re—30,) [ +(re+2r, —40g) [ (46)

r r
ta = i+ (it — s — 3t ) \/;— + Qup + 20— duy) i 47)
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r
v, = "l+(4"n‘l'1;‘31'4)\/L‘

crack tip A of the single crack for a tangential load.

F Qe+ 20, —dep) 2 (48)

The Mode | and Mode 1 stress-intensity tactors presented in Figs 9-14 are obtained by
cquating the coetlicients of \/r ineqns (41) -(44) and (45)-(48). We have

or

and

or

STRESS INTENSITY FACTORS

. 21 2
K, =1kl = R RV Brg—rve~3r,) (49)
, P
2, 2
K, = k| “‘K -+:l L(4l‘1)‘l'1-,—31'4) (50)
. 2n, 2 -
K, =k, = ool [~(4u,,-—u(~—3u,) (51
| -
20 - = ) |
3 H e K q‘
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:
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5L =
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Fig. 10. Mode I and Mode I stress-intensity factors as a function of nondimensional frequency at

crack tip C of the single crack for a tangential load.
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. (52)

2[[2 2
K: B ik:‘ = | — ool Z(4HD—'“5““3NA)

The numerical values of the stress-intensity factors presented herc are the average of eqns
{(49) and (50) for mode I and eqns (51) and (52) for mode 11,

Figurc 9 shows K and K, for crack tip A versus the nondimensional frequency
& =k, H for a horizontal time-harmonic line load, which is applied on the surface of the
layer. K, and X, for the double-crack case at tip C are depicted by Fig. 10. 1t is obscrved
that K, and K, in both cusces start at the same values for low frequencices, then they decrease
(K decreasing more rapidly than K;) and then increase to a peak at about £ = 0.9, Beyond
this frequency, they gradually decrease. Note that K, is dominant, as would be anticipated
from the nature of the loading. For the double cracks, however, both K, and K, reach
nearly the same peak. Note that in both cases mode | dynamic SIFs are substantially higher
than the static values in some ranges of frequencies. On the other hand, the mode I SIFs
have somewhat higher static values. Figures 11 and 12 show K and K, for a normal loading.
In this case the roles are reversed. The opening mode dominates. It is found now that for
the single crack K, and K, increase with frequency reaching sharp peak values at a lower
frequency, i.e. £ & 0.3. This lowering of the resonance frequency from the shear loading
case to the normal casc is in agreement with the results obtained by Keer er af. (1984) for
a horizontal crack buried near the surface of a half-space due to uniform shear and tension
loadings. Figure 12 for the double crack shows quite different behavior than for the single
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Fig. [2. Mode I and Mode I stress-intensity factors as a function of nondimensional frequency at
crack tip C of the right crack for a normal load.



546 M. Botoes e dl

24
s [ cee K
> L M
= B i
— th
b
10 - -

STRESS INTENSITY

NON=-DIMENSIONAL FREQUENCY (ki)

Fig. 13. Mode 1 and Mode T stressaintensity factors as a function of nondimensional frequency at
crack tip B of the right crack for a tangential load.
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Frg. 14 Mode Tand Mode T stress-intensity factors as a function of nondimensional frequency at
crack tip B of the right crack tor a normal load.

crack. It is seen that for the single crack the dynamic SIFs (both K|, and K,) are much
higher than the static values at low frequencies. For the double-crack configuration the
dynamic K, is lower and K is higher than the static values. Finally, K, and K, at crack tip
B for shear and normal loading ure depicted by Figs 13 and 14, respectively. For the
horizontal loading case, both stress-intensity factors at B are lower than those evaluated at
C (Fig. 10). In the case of vertical foading, A7y at tip B is higher than at tip C for both static
and dynamic loadings. Morcover, the dynamic effect is quite large. K, on the other hand,
is lower at B than at C. 1t is clear from the dispersion curves depicted in Fig. 3 that the
frequency values at which A and K, have local maxima do not correspond to a cut-oft
frequency. However, when the frequencies at these peak values are compuared to the natural
(requencics of a Timoshenko plate of length 384 (Table 2) with two different boundary

Table 2. Natura! frequencies for a Simply

Supported (SS) and Clamped (C) Timo-

shenko plate and frequency vitues at peaks
of stress-intensity factors

o=k M
Mode 1 {e9,,) 2 ()
SS 0.34 0.40
C 0.76 0.94

Peak 0.3 0.9
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conditions (simply supported or clamped). they show a good correlation. For tangential
loading the peak occurs at & = 0.9. This value is bounded by the two natural frequencies
of the second mode (®:;). with the lower and upper bounds corresponding to the simply
supported (SS) and clamped (C) case. respectively. In the case of normal loading the peak
occurs at ¢ ~ 0.3. This value is slightly lower than the natural frequency of the first mode
(w,,) for the simply-supported case. However. since the frequency increment is 0.3, the
accuracy of these peak frequency values is within this increment. It is concluded from these
figures that the dynamic effects are quite substantial and. in general. give higher values of
K, for normal impact at low frequencies. The worst case is a single interfacial crack.

4. CONCLUSION

A combined finite-element and integral representation technique has been presented
to analyze scattering of waves by interfacial cracks in a layered half-space. The advantage
of the technique is that both single and multiple cracks have been studied simply by changing
some of the interior elements. Consequently. the computation of the Green's function is
done once and for all by choosing the exterior boundaries B and C appropriately so that all
the scatterers are within C. Thus this ditfers from the integral equation methods that employ
representations over the scatterer surface(s). Numerical results showing CODs and SIFs
for a single crack and for two cracks due to normal and shear line loads have been presented.
It is found that the CODs have similar shapes in both cases at low frequencies, although
there are some differences in detinl that depend on the frequency. The stress-intensity factors
at the outer tips in both cases are found to behave similarly for the horizontal load.
Howcever, they behave quite differently for the vertical load. For the vertical load the mode
[ stress-intensity factor at the inner tips for the double cracks is found to be larger than
that at the outer tips. Dynamic stress-intensity factors are found to attain high peak valucs
at certain frequencies, depending on the loading. The loading and boundary conditions at
the upper layer surface considered here are quite dillerent from those considered by
Gracewski and Bogy (1986u.b). so the results for the single crack considered here cannot
be compared with theirs.
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